Readme for kernel3.m

The file kernel3.m contains the results for the three-loop kernel functions $K^{(3a)}(s)$, $K^{(3b)}(s)$, $K^{(3b,\text{lbl})}(s)$ and $K^{(3c)}(s,s')$ of Ref. [1]. $K^{(3a)}$, $K^{(3b)}$ and $K^{(3b,\text{lbl})}$ are expanded in M_{μ}^2/s and M_e/M_{μ} whereas $K^{(3c)}$ also depends on s' and thus a further assumption on the hierarchy between s and s' is necessary. We provide results for $s \approx s' \gg M_{\mu}^2$ and $s' \gg s \gg M_{\mu}^2$ from which approximations of $K^{(3c)}(s,s')$ valid for all s and s' can be constructed. In the case of $K^{(3c)}(s,s')$ only the leading non-vanishing term in M_e/M_{μ} is computed.

The following table contains the information about the expansion depth of the expressions in kernel3.m:

kernel	symbol in kernel3.m	highest available expansion term
$K^{(3a)}$	K3a	$(M_{\mu}^2/s)^4$
$K^{(3b)}$	K3b	$(\dot{M_{\mu}^2}/s)^4, (M_e^2/s)^1 (M_{\mu}^2/s)^3$
$K^{(3b,\mathrm{lbl})}$	K3bLBL	$(\dot{M_{\mu}^{2}}/s)^{4}, (M_{e}^{2}/s)^{1}(\dot{M_{\mu}^{2}}/s)^{3}$
$K^{(3c)}$	K3cH1	$(\dot{M_{\mu}^2}/s)^5, (M_{\mu}^2/s)^3[(\sqrt{s'}-\sqrt{s})/\sqrt{s}]^3$
	K3cH2	$(\dot{M_{\mu}^2}/s')^5, (\dot{M_{\mu}^2}/s')^1(s/s')^4$

The symbols used in kernel3.m have the following meaning:

symbol	Mmu	Mel	Ms	Msp	deltaMspMs
meaning	M_{μ}	M_e	\sqrt{s}	$\sqrt{s'}$	$\sqrt{s'} - \sqrt{s}$

[1] Alexander Kurz, Tao Liu, Peter Marquard, Matthias Steinhauser, "Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order", SFB/CPP-14-19, TTP14-009.