Readme for kernel3.m

The file kernel3.m contains the results for the three-loop kernel functions $K^{(3 a)}(s), K^{(3 b)}(s), K^{(3 b, 1 \mathrm{lb})}(s)$ and $K^{(3 c)}\left(s, s^{\prime}\right)$ of Ref. [1]. $K^{(3 a)}, K^{(3 b)}$ and $K^{(3 b, \text { lbl })}$ are expanded in M_{μ}^{2} / s and M_{e} / M_{μ} whereas $K^{(3 c)}$ also depends on s^{\prime} and thus a further assumption on the hierarchy between s and s^{\prime} is necessary. We provide results for $s \approx s^{\prime} \gg M_{\mu}^{2}$ and $s^{\prime} \gg s \gg M_{\mu}^{2}$ from which approximations of $K^{(3 c)}\left(s, s^{\prime}\right)$ valid for all s and s^{\prime} can be constructed. In the case of $K^{(3 c)}\left(s, s^{\prime}\right)$ only the leading non-vanishing term in M_{e} / M_{μ} is computed.

The following table contains the information about the expansion depth of the expressions in kernel3.m:

kernel	symbol in kernel3.m	highest available expansion term
$K^{(3 a)}$	K3a	$\left(M_{\mu}^{2} / s\right)^{4}$
$K^{(3 b)}$	K3b	$\left(M_{\mu}^{2} / s\right)^{4},\left(M_{e}^{2} / s\right)^{1}\left(M_{\mu}^{2} / s\right)^{3}$
$K^{(3 b, \text { bl })}$	K3bLBL	$\left(M_{\mu}^{2} / s\right)^{4},\left(M_{e}^{2} / s\right)^{1}\left(M_{\mu}^{2} / s\right)^{3}$
$K^{(3 c)}$	K3cH1	$\left(M_{\mu}^{2} / s\right)^{5},\left(M_{\mu}^{2} / s\right)^{3}\left[\left(\sqrt{s^{\prime}}-\sqrt{s}\right) / \sqrt{s}\right]^{3}$
	K3cH2	$\left(M_{\mu}^{2} / s^{\prime}\right)^{5},\left(M_{\mu}^{2} / s^{\prime}\right)^{1}\left(s / s^{\prime}\right)^{4}$

The symbols used in kernel3.m have the following meaning:

$$
\begin{array}{c|c|c|c|c|c}
\text { symbol } & \text { Mmu } & \text { Mel } & \text { Ms } & \text { Msp } & \text { deltaMspMs } \\
\hline \text { meaning } & M_{\mu} & M_{e} & \sqrt{s} & \sqrt{s^{\prime}} & \sqrt{s^{\prime}}-\sqrt{s}
\end{array}
$$

[1] Alexander Kurz, Tao Liu, Peter Marquard, Matthias Steinhauser, "Hadronic contribution to the muon anomalous magnetic moment to next-to-next-toleading order", SFB/CPP-14-19, TTP14-009.

