Description of c1susy31.m

Alexey Pak, Matthias Steinhauser, Nikolai Zerf

In the Mathematica file c1susy31.m one can find the results for the matching coefficient C_1 , decoupling constant ζ_3^0 and renormalization constant $\delta \Lambda_{\varepsilon}^2$ listed in the following table:

Mathematica expression	notation in paper
C1h1	$C_1^{\overline{\mathrm{DR}},(\mathrm{h1})}$
C1h2	$C_1^{\overline{\mathrm{DR}},(\mathrm{h2})}$
C1h3	$C_1^{\overline{\mathrm{DR}},\mathrm{(h3)}}$
C1exact	$C_1^{\overline{ ext{DR}}}$
zeta30h1	$\zeta_3^{0,(\mathrm{h1})}$
zeta30h2	$\zeta_3^{0,(\mathrm{h2})}$
zeta30h3	$\zeta_3^{0,(\mathrm{h3})}$
deltaLambdaeph1tst	$ig(\delta\Lambda^{(\mathrm{h1})}_{arepsilon, ilde{t}}ig)^2$
deltaLambdaeph1sq	$\left(\delta\Lambda^{(\mathrm{h1})}_{arepsilon, ilde{q}} ight)^2$
deltaLambdaeph2tst	$ig(\delta\Lambda^{(\mathrm{h2})}_{arepsilon, ilde{t}}ig)^2$
deltaLambdaeph2sq	$\left(\delta\Lambda^{(\mathrm{h2})}_{arepsilon, ilde{q}} ight)^2$
deltaLambdaeph3tst	$\left(\delta\Lambda^{ m (h3)}_{arepsilon, ilde{t}} ight)^2$
deltaLambdaeph3sq	$\left(\delta\Lambda^{(\mathrm{h3})}_{arepsilon, ilde{q}} ight)^2$

- The superscripts (h1), (h2) and (h3) indicate that the corresponding quantity has been computed in a certain hierarchy (see Ref. [1]) for details.
- $C_1^{\overline{\text{DR}},(\text{hi})}$ is expanded in terms of $\alpha_s^{(5),\overline{\text{MS}}}(\mu_R) = \alpha_s^{(5)}(\mu_R)$ up to three-loop order.
- $C_1^{\overline{\text{DR}}}$ is the exact result up to two loops.
- ζ_3^0 is the bare decoupling constant for the gluon field expressed in terms of $\overline{\text{DR}}$ renormalized parameters. It is expanded in $\alpha_s^{(\text{SQCD})}(\mu_R)$.
- $(\delta \Lambda_{\varepsilon})^2$ is the two-loop renormalization constant of the $h\varepsilon\varepsilon$ coupling and depends on $\alpha_s^{(SQCD)}$.

symbol	meaning	symbol	numerical value/meaning
apifull	$\alpha_s^{(\mathrm{SQCD})}/\pi$	tr	$\frac{1}{2}$
api5	$\alpha_s^{(5),\overline{\mathrm{MS}}}/\pi$	cf	$\frac{4}{3}$
Mes	$M_{arepsilon}$	ca	3
mst1	$m_{ ilde{t}_1}$	na	8
mst2	$m_{ ilde{t}_2}$	d33	$\frac{5}{6}$
msq	$m_{ ilde q}$	nq	5
mgl	$m_{ ilde{g}}$	nt	1
mt	m_t	lm'M'	$\ln \frac{\mu_{\rm R}^2}{\mu_{\rm N}^2}$
Sthetat	$\sin \theta_t$	Dm2'X''Y'	$\Delta^Q_{\mathbf{X},\mathbf{Y},\mathbf{Y}} = \mathbf{m}^{\mathbf{X}} \mathbf{Y}^2 - \mathbf{m}^{\mathbf{Y}} \mathbf{Y}^2$
Cthetat	$\cos heta_t$	Dm1'X''Y'	$\Delta_{\mathbf{'}\mathbf{X}}, \mathbf{'}_{\mathbf{y}}, = \mathtt{m'}\mathbf{X'} - \mathtt{m'}\mathbf{Y'}$
Salpha	$\sin \alpha$	Sbeta	$\sin eta$
Calpha	$\cos lpha$	Cbeta	\coseta
รพ	$\sin heta_W$	Mz	M_Z
ер	ϵ	muSUSY	$\mu_{ m susy}$

In the expressions listed in the above table the following variables are used:

In C1h'i' the basis masses are given by $m_R = m_{\tilde{t}_1}$ (h1), $m_R = m_{\tilde{g}}$ (h2), $m_{R_1} = m_{\tilde{g}}$ and $m_{R_2} = m_t$ (h3). The expressions contain the following mass differences:

Dm1glst1, Dm2st1st2, Dm2sqst1 (h1)

Dm2glst2, Dm2sqgl (h2)

Dm2st1t, Dm2glst2, Dm2sqgl (h3)

For further details on the meaning and definition of the parameters we refer to Ref. [1].

References

 A. Pak, M. Steinhauser and N. Zerf "Supersymmetric next-to-next-to-leading order corrections to Higgs boson production in gluon fusion" SFB/CPP-12-57, TTP12-26, LPN12-087.